
TURING MACHINES
1

AGENDA

 Turing Machines

 Alan Turing

 Motivation

 Church-Turing Thesis

 Definitions

 Computation

 TM Configuration

 Recognizers vs. Deciders

2

ALAN TURING

Alan Turing was one of the founding fathers of
CS.

 His computer model –the Turing Machine–
was inspiration/premonition of the electronic
computer that came two decades later

 Was instrumental in cracking the Nazi
Enigma cryptosystem in WWII

 Invented the “Turing Test” used in AI

 Legacy: The Turing Award. Pre-eminent
award in Theoretical CS

3

A THINKING MACHINE

First Goal of Turing’s Machine: A model that
can compute anything that a human can
compute. Before invention of electronic
computers the term “computer” actually
referred to a person who’s line of work is to
calculate numerical quantities!

As this is a philosophical endeavor, it can’t
really be proved.

Turing’s Thesis: Any “algorithm” can be
carried out by one of his machines

4

A THINKING MACHINE

Second Goal of Turing’s Machine: A model
that’s so simple, that can actually prove
interesting epistemological results. Eyed
Hilbert’s 10th problem, as well as a
computational analog of Gödel’s
Incompleteness Theorem in Logic.

Philosophy notwithstanding, Turing’s
programs for cracking the Enigma
cryptosystem prove that he really was a true
hacker! Turing’s machine is actually easily
programmable, if you really get into it. Not
practically useful, though…

5

A THINKING MACHINE

Imagine a super-organized, obsessive-
compulsive human computer. The
computer wants to avoid mistakes so
everything written down is completely
specified one letter/number at a time. The
computer follows a finite set of rules which
are referred to every time another symbol is
written down. Rules are such that at any
given time, only one rule is active so no
ambiguity can arise. Each rule activates
another rule depending on what
letter/number is currently read, EG: 6

A THINKING MACHINE
EG SUCCESSOR PROGRAM

Sample Rules:

If read 1, write 0, go right, repeat.

If read 0, write 1, HALT!

If read •, write 1, HALT!

Let’s see how they are carried out on a piece of paper
that contains the reverse binary representation of
47:

7

A THINKING MACHINE
EG SUCCESSOR PROGRAM

If read 1, write 0, go right, repeat.

If read 0, write 1, HALT!

If read •, write 1, HALT!

8

1 1 1 1 0 1

A THINKING MACHINE
EG SUCCESSOR PROGRAM

If read 1, write 0, go right, repeat.

If read 0, write 1, HALT!

If read •, write 1, HALT!

9

0 1 1 1 0 1

A THINKING MACHINE
EG SUCCESSOR PROGRAM

If read 1, write 0, go right, repeat.

If read 0, write 1, HALT!

If read •, write 1, HALT!

10

0 0 1 1 0 1

A THINKING MACHINE
EG SUCCESSOR PROGRAM

If read 1, write 0, go right, repeat.

If read 0, write 1, HALT!

If read •, write 1, HALT!

11

0 0 0 1 0 1

A THINKING MACHINE
EG SUCCESSOR PROGRAM

If read 1, write 0, go right, repeat.

If read 0, write 1, HALT!

If read •, write 1, HALT!

12

0 0 0 0 0 1

A THINKING MACHINE
EG SUCCESSOR PROGRAM

If read 1, write 0, go right, repeat.

If read 0, write 1, HALT!

If read •, write 1, HALT!

13

0 0 0 0 1 1

A THINKING MACHINE
EG SUCCESSOR PROGRAM

So the successor’s output on 111101 was 000011 which

is the reverse binary representation of 48.

Similarly, the successor of 127 should be 128:

14

A THINKING MACHINE
EG SUCCESSOR PROGRAM

If read 1, write 0, go right, repeat.

If read 0, write 1, HALT!

If read •, write 1, HALT!

15

1 1 1 1 1 1 1

A THINKING MACHINE
EG SUCCESSOR PROGRAM

If read 1, write 0, go right, repeat.

If read 0, write 1, HALT!

If read •, write 1, HALT!

16

0 1 1 1 1 1 1

A THINKING MACHINE
EG SUCCESSOR PROGRAM

If read 1, write 0, go right, repeat.

If read 0, write 1, HALT!

If read •, write 1, HALT!

17

0 0 1 1 1 1 1

A THINKING MACHINE
EG SUCCESSOR PROGRAM

If read 1, write 0, go right, repeat.

If read 0, write 1, HALT!

If read •, write 1, HALT!

18

0 0 0 1 1 1 1

A THINKING MACHINE
EG SUCCESSOR PROGRAM

If read 1, write 0, go right, repeat.

If read 0, write 1, HALT!

If read •, write 1, HALT!

19

0 0 0 0 1 1 1

A THINKING MACHINE
EG SUCCESSOR PROGRAM

If read 1, write 0, go right, repeat.

If read 0, write 1, HALT!

If read •, write 1, HALT!

20

0 0 0 0 0 1 1

A THINKING MACHINE
EG SUCCESSOR PROGRAM

If read 1, write 0, go right, repeat.

If read 0, write 1, HALT!

If read •, write 1, HALT!

21

0 0 0 0 0 0 1

A THINKING MACHINE
EG SUCCESSOR PROGRAM

If read 1, write 0, go right, repeat.

If read 0, write 1, HALT!

If read •, write 1, HALT!

22

0 0 0 0 0 0 0

A THINKING MACHINE
EG SUCCESSOR PROGRAM

If read 1, write 0, go right, repeat.

If read 0, write 1, HALT!

If read •, write 1, HALT!

23

0 0 0 0 0 0 0 1

A THINKING MACHINE

It was hard for the ancients to believe that any

algorithm could be carried out on such a

device. For us, it’s much easier to believe,

especially if you’ve programmed in

assembly!

However, ancients did finally believe Turing

when Church’s lambda-calculus paradigm

(on which lisp programming is based)

proved equivalent!

24

TURING MACHINES

A Turing Machine (TM) is a device with a finite
amount of read-only “hard” memory (states),
and an unbounded1 amount of read/write
tape-memory. There is no separate input.
Rather, the input is assumed to reside on
the tape at the time when the TM starts
running.

Just as with Automata, TM’s can either be
input/output machines (compare with Finite
State Transducers), or yes/no decision
machines. Start with yes/no machines.

25

COMPARISON WITH PREVIOUS MODELS

26

Device
Separate
Input?

Read/Write Data
Structure

Deterministic
by default?

FA

PDA

TM

COMPARISON WITH PREVIOUS MODELS

27

Device
Separate
Input?

Read/Write Data
Structure

Deterministic
by default?

FA Yes None Yes

PDA

TM

COMPARISON WITH PREVIOUS MODELS

28

Device
Separate
Input?

Read/Write Data
Structure

Deterministic
by default?

FA Yes None Yes

PDA Yes LIFO Stack No

TM

COMPARISON WITH PREVIOUS MODELS

29

Device
Separate
Input?

Read/Write Data
Structure

Deterministic
by default?

FA Yes None Yes

PDA Yes LIFO Stack No

TM No
1-way infinite
tape. 1 cell

access per step.

Yes

(but will also
allow crashes)

TURING MACHINE

DECISION MACHINE EXAMPLE

First example (adding 1 bit to reverse binary

string) was basically something that a Finite

Transducer could have achieved (except

when there’s overflow). Let’s give an

example from next step up in language

hierarchy.

{bit-strings with same number of 0’s as 1’s}

 –a context free language:

30

TURING MACHINE

DECISION MACHINE EXAMPLE

This is a “true” Turing machine as:

 Tape is semi-infinite (indicated by torn cell):

 Input is prepared at beginning of tape

 No intrinsic way to detect left tape end
 similar to empty stack detection problem for PDA’s

 similar trick used –introduce $ as the end symbol

 All rules must include a move direction (R/L)

 Situations that can’t happen aren’t dealt with
(technically under-deterministic)

31

TURING MACHINE

DECISION MACHINE EXAMPLE

{bit-strings with same number of 0’s as 1’s}:

Pseudocode:

while (there is a 0 and a 1)

 cross these out

if (everything crossed out)

 accept

else

 reject

32

TM EXAMPLE

INSTRUCTIONS SET

0. if read •, go right (dummy move), ACCEPT

 if read 0, write $, go right, goto 1 // $ detects start of tape

 if read 1, write $, go right, goto 2

1. if read •, go right, REJECT

 if read 0 or X, go right, repeat (= goto 1) // look for a 1

 if read 1, write X, go left, goto 3

2. if read •, go right, REJECT

 if read 1 or X, go right, repeat // look for a 0

 if read 0, write X, go left, goto 3

3. if read $, go right, goto 4 // look for start of tape

 else, go left, repeat

4. if read 0, write X, go right, goto 1 // similar to step 0

 if read 1, write X, go right, goto 2

 if read X, go right, repeat

 if read •, go right, ACCEPT

33

TM EXAMPLE

STATE DIAGRAM

These instructions can be expressed by a familiar

looking flow diagram:

34

0

1

rej

0$,R

acc

 •R

2 1$,R

0|XR

1|XR

3

 •R

0X,L

1X,L 0|1|XL

4

$R

XR

0X,R

1X,R

 •R

TM TRANSITION NOTATION

An edge from the state p to the state q labeled
by …

 ab,D means if in state p and tape head
reading a, replace a by b and move in the
direction D, and into state q

 aD means if in state p and tape head
reading a, don’t change a and move in the
direction D, and into state q

 a|b|…|z  … means that given that the
tape head is reading any of the pipe
separated symbols, take same action on
any of the symbols

35

TM CONFIGURATION NOTATION

A TM’s next action is completely determined by
current state and symbol read, so can
predict all of future actions if know:

1. current state

2. current tape contents

3. current position of TM’s reading “head”

Handy notation lists all of these in a single
string. A symbol representing current state,
is sandwiched between content of tape to
left of head, and content of tape to right
(including tape head). The part of tape
which is blank ad-infinitum is ignored.

36

TM CONFIGURATION NOTATION

For example

Is denoted by:

$xxx1q3010

37

Reading rule 3

TM EXAMPLE

CRAZY WEB-PAGE

The following link shows how the example machine

accepts 01101010 and how the tape configuration

notation changes step by step.

38

http://www.cs.columbia.edu/~zeph/3261/L14/TuringTape/
http://www.cs.columbia.edu/~zeph/3261/L14/TuringTape/

TM FORMAL DEFINITION

STATIC PICTURE

DEF: A Turing machine (TM) consists of a 7-tuple M =
(Q, S, G, d, q0, qacc, qrej). Q, S, and q0, are the
same as for an FA. G is the tape alphabet
which necessarily contains the blank symbol •,
as well as the input alphabet S. d is as follows:

Therefore given a non-halt state p, and a tape
symbol x, d(p,x) = (q,y,D) means that TM goes
into state q, replaces x by y, and the tape head
moves in direction D.

39

}RL,{}),{-(:δ rejacc GG QQ qq

TM DYNAMIC PICTURE

A string x is accepted by M if after being put on the

tape with the Turing machine head set to the left-

most position, and letting M run, M eventually

enters the accept state. In this case w is an

element of L(M) –the language accepted by M.

We can formalize this notion as follows:

40

TM FORMAL DEFINITION

DYNAMIC PICTURE

Suppose TM’s configuration at time t is given by uapxv
where p is the current state, ua is what’s to the left of
the head, x is what’s being read, and v is what’s to the
right of the head.

If d(p,x) = (q,y,R) then write:

uapxv  uaypv

With resulting configuration uaypv at time t+1. If, d(p,x)
= (q,y,L) instead, then write:

uapxv  upayv

There are also two special cases:
 head is forging new ground –pad with the blank symbol •

 head is stuck at left end –by def. head stays put (only case)

“” is read as “yields”
41

TM FORMAL DEFINITION

DYNAMIC PICTURE

As with context free grammars, one can consider the
reflexive, transitive closure “*” of “”. I.e. this is the
relation between strings recursively defined by:

 if u = v then u * v

 if u v then u * v

 if u *v and v * w, then u *w

“*” is read as “computes to”

A string x is said to be accepted by M if the start
configuration q0 x computes to some accepting
configuration y –i.e., a configuration containing qacc.

The language accepted by M is the set of all accepted
strings. I.e:

L(M) = { x  S* |  accepting config. y, q0 x * y }
42

TM ACCEPTORS VS. DECIDERS

Three possibilities occur on a given input w :
1. The TM M eventually enters qacc and

therefore halts and accepts. (w  L(M))
2. The TM M eventually enters qrej or crashes

somewhere. M rejects w . (w  L(M))
3. Neither occurs! I.e., M never halts its

computation and is caught up in an infinite
loop, never reaching qacc or qrej. In this case
w is neither accepted nor rejected. However,
any string not explicitly accepted is
considered to be outside the accepted
language. (w  L(M)) 43

TM ACCEPTORS VS. DECIDERS

Any Turing Machines is said to be a recognizer and
recognizes L(M); if in addition, M never enters an
infinite loop, M is called a decider and is said to
decide L(M).

Q: Is the above M an recognizer? A decider? What is
L(M)?

44

0

1

rej acc

2

•R

1R

0R

1R 0R

0R
1L

TM ACCEPTORS VS. DECIDERS

A: M is an recognizer but not a decider because 101

causes an infinite loop.

L(M) = 1+ 0+

Q: Is L(M) decidable ?
45

0

1

rej acc

2

•R

1R

0R

1R 0R

0R
1L

TM ACCEPTORS VS. DECIDERS

A: Yes. All regular languages are decidable

because can always convert a DFA into a

TM without infinite loops.

46

CONSTRUCTIVE EXAMPLE

Here’s a document showing how modular design can

help you write down a TM decider for {anbncn}. The

example is non-context free.

47

http://www.cs.columbia.edu/~zeph/3261/L14/TuringMachine.pdf
http://www.cs.columbia.edu/~zeph/3261/L14/TuringMachine.pdf
http://www.cs.columbia.edu/~zeph/3261/L14/TuringMachine.pdf
http://www.cs.columbia.edu/~zeph/3261/L14/TuringMachine.pdf
http://www.cs.columbia.edu/~zeph/3261/L14/TuringMachine.pdf
http://www.cs.columbia.edu/~zeph/3261/L14/TuringMachine.pdf
http://www.cs.columbia.edu/~zeph/3261/L14/TuringMachine.pdf

