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ALAN TURING 

Alan Turing was one of the founding fathers of 
CS. 

  His computer model –the Turing Machine– 
was inspiration/premonition of the electronic 
computer that came two decades later 

  Was instrumental in cracking the Nazi 
Enigma cryptosystem in WWII 

  Invented the “Turing Test” used in AI 

  Legacy: The Turing Award.  Pre-eminent 
award in Theoretical CS 
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A THINKING MACHINE 

First Goal of Turing’s Machine:  A model that 
can compute anything that a human can 
compute.  Before invention of electronic 
computers the term “computer” actually 
referred to a person who’s line of work is to 
calculate numerical quantities! 

As this is a philosophical endeavor, it can’t 
really be proved. 

Turing’s Thesis: Any “algorithm” can be 
carried out by one of his machines 
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A THINKING MACHINE 

Second Goal of Turing’s Machine:  A model 
that’s so simple, that can actually prove 
interesting epistemological results.  Eyed 
Hilbert’s 10th problem, as well as a 
computational analog of Gödel’s 
Incompleteness Theorem in Logic. 

Philosophy notwithstanding, Turing’s 
programs for cracking the Enigma 
cryptosystem prove that he really was a true 
hacker!  Turing’s machine is actually easily 
programmable, if you really get into it.  Not 
practically useful, though… 
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A THINKING MACHINE 

Imagine a super-organized, obsessive-
compulsive human computer.  The 
computer wants to avoid mistakes so 
everything written down is completely 
specified one letter/number at a time.  The 
computer follows a finite set of rules which 
are referred to every time another symbol is 
written down.  Rules are such that at any 
given time, only one rule is active so no 
ambiguity can arise.  Each rule activates 
another rule depending on what 
letter/number is currently read, EG: 6 



A THINKING MACHINE 
EG SUCCESSOR PROGRAM 

Sample Rules: 

 

If read 1, write 0, go right, repeat. 

If read 0, write 1, HALT! 

If read •, write 1, HALT! 

 

Let’s see how they are carried out on a piece of paper 
that contains the reverse binary representation of 
47: 
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A THINKING MACHINE 
EG SUCCESSOR PROGRAM 

If read 1, write 0, go right, repeat. 

If read 0, write 1, HALT! 

If read •, write 1, HALT! 
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A THINKING MACHINE 
EG SUCCESSOR PROGRAM 

If read 1, write 0, go right, repeat. 

If read 0, write 1, HALT! 

If read •, write 1, HALT! 

 

9 

0 1 1 1 0 1 



A THINKING MACHINE 
EG SUCCESSOR PROGRAM 

If read 1, write 0, go right, repeat. 

If read 0, write 1, HALT! 

If read •, write 1, HALT! 
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A THINKING MACHINE 
EG SUCCESSOR PROGRAM 

If read 1, write 0, go right, repeat. 

If read 0, write 1, HALT! 

If read •, write 1, HALT! 
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A THINKING MACHINE 
EG SUCCESSOR PROGRAM 

If read 1, write 0, go right, repeat. 

If read 0, write 1, HALT! 

If read •, write 1, HALT! 
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0 0 0 0 0 1 



A THINKING MACHINE 
EG SUCCESSOR PROGRAM 

If read 1, write 0, go right, repeat. 

If read 0, write 1, HALT! 

If read •, write 1, HALT! 
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A THINKING MACHINE 
EG SUCCESSOR PROGRAM 

So the successor’s output on 111101 was 000011 which 

is the reverse binary representation of 48. 

Similarly, the successor of 127 should be 128: 
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A THINKING MACHINE 
EG SUCCESSOR PROGRAM 

If read 1, write 0, go right, repeat. 

If read 0, write 1, HALT! 

If read •, write 1, HALT! 
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A THINKING MACHINE 
EG SUCCESSOR PROGRAM 

If read 1, write 0, go right, repeat. 

If read 0, write 1, HALT! 

If read •, write 1, HALT! 
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A THINKING MACHINE 
EG SUCCESSOR PROGRAM 

If read 1, write 0, go right, repeat. 

If read 0, write 1, HALT! 

If read •, write 1, HALT! 

 

17 

0 0 1 1 1 1 1 



A THINKING MACHINE 
EG SUCCESSOR PROGRAM 

If read 1, write 0, go right, repeat. 

If read 0, write 1, HALT! 

If read •, write 1, HALT! 
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A THINKING MACHINE 
EG SUCCESSOR PROGRAM 

If read 1, write 0, go right, repeat. 

If read 0, write 1, HALT! 

If read •, write 1, HALT! 
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A THINKING MACHINE 
EG SUCCESSOR PROGRAM 

If read 1, write 0, go right, repeat. 

If read 0, write 1, HALT! 

If read •, write 1, HALT! 
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A THINKING MACHINE 
EG SUCCESSOR PROGRAM 

If read 1, write 0, go right, repeat. 

If read 0, write 1, HALT! 

If read •, write 1, HALT! 

 

21 

0 0 0 0 0 0 1 



A THINKING MACHINE 
EG SUCCESSOR PROGRAM 

If read 1, write 0, go right, repeat. 

If read 0, write 1, HALT! 

If read •, write 1, HALT! 
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A THINKING MACHINE 
EG SUCCESSOR PROGRAM 

If read 1, write 0, go right, repeat. 

If read 0, write 1, HALT! 

If read •, write 1, HALT! 
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A THINKING MACHINE 

It was hard for the ancients to believe that any 

algorithm could be carried out on such a 

device.  For us, it’s much easier to believe, 

especially if you’ve programmed in 

assembly! 

However, ancients did finally believe Turing 

when Church’s lambda-calculus paradigm 

(on which lisp programming is based) 

proved equivalent! 
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TURING MACHINES 

A Turing Machine (TM) is a device with a finite 
amount of read-only “hard” memory (states), 
and an unbounded1 amount of read/write 
tape-memory.  There is no separate input.  
Rather, the input is assumed to reside on 
the tape at the time when the TM starts 
running. 

Just as with Automata, TM’s can either be 
input/output machines (compare with Finite 
State Transducers), or yes/no decision 
machines.  Start with yes/no machines. 
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COMPARISON WITH PREVIOUS MODELS 

26 
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COMPARISON WITH PREVIOUS MODELS 
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COMPARISON WITH PREVIOUS MODELS 
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COMPARISON WITH PREVIOUS MODELS 
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TURING MACHINE 

DECISION MACHINE EXAMPLE 

First example (adding 1 bit to reverse binary 

string) was basically something that a Finite 

Transducer could have achieved (except 

when there’s overflow).  Let’s give an 

example from next step up in language 

hierarchy. 

{bit-strings with same number of 0’s as 1’s}  

   –a context free language: 
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TURING MACHINE 

DECISION MACHINE EXAMPLE 

This is a “true” Turing machine as: 

  Tape is semi-infinite (indicated by torn cell): 

 

 

  Input is prepared at beginning of tape 

  No intrinsic way to detect left tape end 
 similar to empty stack detection problem for PDA’s 

 similar trick used –introduce $ as the end symbol 

  All rules must include a move direction (R/L) 

  Situations that can’t happen aren’t dealt with 
(technically under-deterministic) 
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TURING MACHINE 

DECISION MACHINE EXAMPLE 

{bit-strings with same number of 0’s as 1’s}: 

 

Pseudocode: 

while (there is a 0 and a 1) 

 cross these out 

if (everything crossed out) 

 accept 

else 

 reject 
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TM EXAMPLE 

INSTRUCTIONS SET 

0. if read •, go right (dummy move), ACCEPT 

 if read 0, write $, go right, goto 1  // $ detects start of tape 

 if read 1, write $, go right, goto 2 

1.  if read •, go right, REJECT  

 if read 0 or X, go right, repeat (= goto 1) // look for a 1 

 if read 1, write X, go left, goto 3 

2. if read •, go right, REJECT 

 if read 1 or X, go right, repeat   // look for a 0 

 if read 0, write X, go left, goto 3   

3. if read $, go right, goto 4  // look for start of tape 

 else, go left, repeat 

4. if read 0, write X, go right, goto 1 // similar to step 0 

 if read 1, write X, go right, goto 2 

 if read X, go right, repeat 

 if read •, go right, ACCEPT 
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TM EXAMPLE 

STATE DIAGRAM 

These instructions can be expressed by a familiar 

looking flow diagram: 
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TM TRANSITION NOTATION 

An edge from the state p to the state q labeled 
by … 

 ab,D  means if in state p and tape head 
reading a, replace a by b and move in the 
direction D, and into state q 

 aD     means if in state p and tape head 
reading a, don’t change a and move in the 
direction D, and into state q 

 a|b|…|z  …   means that given that the 
tape head is reading any of the pipe 
separated symbols, take same action on 
any of the symbols 
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TM CONFIGURATION NOTATION 

A TM’s next action is completely determined by 
current state and symbol read, so can 
predict all of future actions if know: 

1. current state 

2. current tape contents 

3. current position of TM’s reading “head” 

Handy notation lists all of these in a single 
string.  A symbol representing current state, 
is sandwiched between content of tape to 
left of head, and content of tape to right 
(including tape head).  The part of tape 
which is blank ad-infinitum is ignored. 
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TM CONFIGURATION NOTATION 

For example 

 

 

 

 

Is denoted by: 

$xxx1q3010 

37 

Reading rule 3 



TM EXAMPLE 

CRAZY WEB-PAGE 

The following link shows how the example machine 

accepts 01101010 and how the tape configuration 

notation changes step by step. 
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TM FORMAL DEFINITION 

STATIC PICTURE 

DEF:  A Turing machine (TM) consists of a 7-tuple M = 
(Q, S, G, d, q0, qacc, qrej). Q, S, and q0, are the 
same as for an FA. G is the tape alphabet  
which necessarily contains the blank symbol •, 
as well as the input alphabet S. d is as follows: 

 

Therefore given a non-halt  state p, and a tape 
symbol x, d(p,x) = (q,y,D) means that TM goes 
into state q, replaces x by y, and the tape head 
moves in direction D. 
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TM DYNAMIC PICTURE 

A string x is accepted by M if after being put on the 

tape with the Turing machine head set to the left-

most position, and letting M run, M eventually 

enters the accept state.  In this case w is an 

element of L(M) –the language accepted by M.  

We can formalize this notion as follows: 
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TM FORMAL DEFINITION 

DYNAMIC PICTURE 

Suppose TM’s configuration at time t is given by uapxv 
where p is the current state, ua is what’s to the left of 
the head, x is what’s being read, and v is what’s to the 
right of the head. 

If d(p,x) = (q,y,R) then write: 

uapxv    uaypv 

With resulting configuration uaypv at time t+1.   If, d(p,x) 
= (q,y,L) instead, then write: 

uapxv    upayv 

There are also two special cases: 
 head is forging new ground –pad with the blank symbol  • 

 head is stuck at left end –by def. head stays put (only case) 

“” is read as “yields” 
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TM FORMAL DEFINITION 

DYNAMIC PICTURE 

As with context free grammars, one can consider the 
reflexive, transitive closure “*” of “”.  I.e. this is the 
relation between strings recursively defined by: 

  if u = v  then u * v 

  if u v  then u * v 

  if u *v  and v * w, then  u *w 

“*” is read as “computes to” 

A string x is said to be accepted  by M  if the start 
configuration q0 x computes to some accepting 
configuration y –i.e., a configuration containing qacc. 

The language accepted by M is the set of all accepted 
strings.  I.e: 

L(M) = { x  S* |  accepting config. y, q0 x * y } 
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TM ACCEPTORS VS. DECIDERS 

Three possibilities occur on a given input w : 
1. The TM M eventually enters qacc and 

therefore halts and accepts.  (w  L(M) ) 
2. The TM M eventually enters qrej or crashes 

somewhere.  M rejects w . (w  L(M) ) 
3. Neither occurs!  I.e., M never halts its 

computation and is caught up in an infinite 
loop, never reaching qacc or qrej.  In this case 
w is neither accepted nor rejected. However, 
any string not explicitly accepted is 
considered to be outside the accepted 
language. (w  L(M) ) 43 



TM ACCEPTORS VS. DECIDERS 

Any Turing Machines is said to be a recognizer and 
recognizes L(M); if in addition, M never enters an 
infinite loop, M is called a decider and is said to 
decide L(M). 

 

 

 

 

 

 

Q:  Is the above M an recognizer?  A decider?  What is 
L(M)? 
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TM ACCEPTORS VS. DECIDERS 

A:  M is an recognizer but not a decider because 101 

causes an infinite loop. 

L(M) = 1+ 0+ 

 

 

 

 

 

 

 

 

 

 

 

 

Q:  Is L(M ) decidable ? 
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TM ACCEPTORS VS. DECIDERS 

A:  Yes.  All regular languages are decidable 

because can always convert a DFA into a 

TM without infinite loops. 

46 



CONSTRUCTIVE EXAMPLE 

Here’s a document showing how modular design can 

help you write down a TM decider for {anbncn}.  The 

example is non-context free. 
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